(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekananda Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS B. Tech Second Year (4th semester)

Computer Science and Engineering

S.	Board of Studies		Course .		erio pe we	ds er ek	Sch	eme of	Exam	Total	С
N.	(BOS)	Courses (Subject)	Code		T	D	The	ory/Pr	actical	Mar	redit
				Т	Р	ESE	СТ	ТА	ks		
1	Applied Mathematics	Discrete Structure	AM100401	3	1	-	100	20	30	150	4
2	Comp. Sc. and Engineering	Computer System Architecture and Microprocessor	CS102401	2	1	-	100	20	30	150	3
3	Comp. Sc. and Engineering	Java Programming	CS102402	3	0	-	100	20	30	150	3
4	Comp. Sc. and Engineering	Analysis and Design of Algorithms	CS102403	3	0	-	100	20	30	150	3
5	Comp. Sc. and Engineering	Database Management System	CS102404	3	0	-	100	20	30	150	3
6	Comp. Sc. and Engineering	Java Programming Lab	CS102491	-		2	25	-	25	50	1
7	Comp. Sc. and Engineering	Python Lab	CS102492	-		2	25	-	25	50	1
8	Comp. Sc. and Engineering	Database Management System Lab	CS102493	-		2	25	-	25	50	1
9	Comp. Sc. and Engineering	Mini Project-II	CS102494	-		2	50	-	25	75	1
10	Applied Chemistry	Biology For Engineers	AC100495	-	-	-	-	-	25	25	-
	Total			14	2	8	625	100	275	1000	20

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code AM100401	Discrete Structure	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	-	ESE Duration
Scheme	100	20	30	150	3 hours.

Course Objective	course outcomes
 The Objective of this course is: To introduce a number of discrete mathematical structures found to be serving as tools in the development of theoretical computer science. Course focuses on how discrete structures functional actually helped computer engineers to solve problems occurred in the development of programming languages. Course highlights the importance of discrete structures towards simulation of a problem in computer science engineering. 	 After completion of this course students willbe: CO1. Able to apply mathematical logic and Boolean algebra in switching circuits & logic circuits. CO2. Familiar with set theory, relation and functions. CO3. Familiar with algebraic structures, graphtheory and combinatorics. CO4. Able to solve problems in various fields in computer science, especially networking. CO5. To gain the basic knowledge of graphs.

UNIT-I MATHEMATICAL LOGIC & BOOLEAN ALGEBRA:

Basic concept of mathematical logic, Statements, Connectives, Conditional and biconditional statements, Logical equivalence, Logical implication & quantifiers, Basic concept of Boolean Algebra, Properties of Boolean Algebra, Boolean functions, Disjunctive & conjunctive normal forms of Boolean functions, Applications of Boolean Algebra in switching circuits & logic circuits. [10 hrs.]

UNIT-II SET THEORY, RELATIONS, FUNCTIONS:

Basic concept of set theory, Relations, Properties of relation in a set, Equivalence relation, Composition of relations, Partial order & total order relations, Lattices & Hasse diagram, Introduction to function, Inverse, Identity, Injective, Surjective & Bijective functions, Composition of functions and some special functions. [10 hrs]

UNIT-III ALGEBRAIC STRUCTURES:

Groups, Subgroups, Cosets, Lagrange 's theorem, Isomorphism, Automorphism, Homomorphism, Codes & group codes, Rings, Integral domains and Fields. [10 hrs]

UNIT-IV GRAPH THEORY:

Introduction to graph theory, Walks, Paths & Circuits, Types of graphs, shortest path problems, Eulerian and Hamiltonian graphs, Basic concept of tree: spanning tree, minimum spanning tree, search tree, rooted binary tree, cut sets, Network flow, Matrix representation of graphs. [9 hrs]

UNIT-V COMBINATORICS:

Permutation and combination, pigeon-hole principle, Mathematical induction, Principle of inclusion & exclusion, Generating function, Recurrence relation.

[9 hrs]

CO5

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO3

CO2

CO1

CO4

Text Books:

S.No.	Title	Authors	Publisher
1	Elements of Discrete Mathematics	C.L Liu	Tata McGraw-Hill, Publications.
2	Discrete Mathematical Structures	Bernard Kolman, Robert C. Busby and Sharon Cutler Ross	Pearson Education.

S. No.	Title	Authors	Publisher
1	A Text Book of Discrete Mathematics	Swapan Kumar Sarkar, S. Chand & Compeny Ltd	Swapan Kumar Sarkar, S. Chand & Compeny Ltd
2	Graph theory with applications to engineering computer science	Narsingh Deo	Prentice Hall of India.
3	Discrete mathematics for computer scientists and mathematicians	J.L. Mott, A. Kandel and T.P. Baker	Prentice Hall of India.
4	Discrete Mathematical Structures with applications to computer science	J.P. Tremblay and R. Manohar	Tata McGraw-Hill.

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102401	Computer System Architecture and Microprocessor	L = 2	T = 1	$\mathbf{P} = 0$	Credits = 3
Evolution	ESE	СТ	ТА	-	ESE Duration
Scheme	100	20	30	150	3 hours.

Course Outcomes
 CO1 Identify the basic hardware components of a computer system. CO2 Familiarize themselves with binary and hexadecimal number systems including computer arithmetic. CO3 Familiarize themselves with functional units of the processor such as the register file and arithmetic logical unit. CO4 Understand basics functionality of systems: parallel, pipelined, superscalar and RISC/CISC architectures. CO5 Represent system design in appropriate formats; addressing modes, an instruction sets as per the system configuration requirements.

UNIT-I Basic Building blocks of Computer

CPU structure and functions, processor organization, ALU, data paths, internal registers, status flags; microoperations, instruction format, instruction cycle, hardwired control, micro programmed control, microinstruction sequencing and execution, addressing modes and formats, System bus structure: Data, address and control buses, bit slicing

UNIT-II Data Representation

Number representations and their operations, Design of Fast Adders, signed multiplication, Booth 's Algorithm, bitpair recoding, Integer Division, Floating point numbers and operations, guard bits and rounding

UNIT-III Memory and Peripheral devices

Memory system, internal and external memory, memory hierarchy, cache memory and itsworking, virtual memory concept. I/O organization; I/O techniques: interrupts, polling, DMA; Synchronous vs. asynchronous I/O.

UNIT-IV Pipelining

Pipelining, basic concepts in pipelining, delayed branch, branch prediction, data dependency, instruction pipelining, multiple execution units, performance considerations, Basic concepts in parallel processing: & classification of parallel architectures, Vector Processing, Array Processors.

UNIT-V 8085 Microprocessor

8085 microprocessor architecture; Instruction set, instruction types and formats; Instruction execution, instruction cycles, different types of machine cycles and timing diagram.

16-bit microprocessors families: 8086 architecture, registers, memory segmentation and addressing, 32-bit Intel microprocessors families: The Intel 80286, 80386, 80486,

64-bit Intel microprocessors families: The Intel 805xx, 806xx, 807xx. Recent Processors and their specifications.

[7hrs]

1.00 Applicable for AY 2021-22 Onwards Chairman (AC) Chairman (BoS) Date of Release Version

[8 hrs.] **CO2**

CO1

[7hrs] CO3

[7hrs] **CO4**

[7hrs]

CO5

Text Books:

S. No.	Title	Author(s)	Publisher
1	Computer System Architecture	Mano, M.M	Prentice-Hall of India. 2004
2	Computer organization Architecture	Rajaraman, V. and Radhakrishnan,T	Prentice-Hall ofIndia.2007
3	Computer architecture & organization	Govindrajalu, B	Tata McGraw-Hill. 2004

S. No.	Title	Author(s)	Publisher
1	Computer Architecture and Design	A.J Wand Go &	Wokingham UK
1		Addison Wisely	1989
	Computer Architecture	John P Hayes	Prentice-Hall of India. 2007
2	and Organization		

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102402	Java Programming	L = 3	$\mathbf{T} = 0$	$\mathbf{P} = 0$	Credits = 3
Fyaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 hours.

Course Objective	Course Outcomes
The objective of this course is:	CO1 To construct Java programs using features
• Understand fundamentals of	of Object-oriented programming.
programming such as	CO2 Able to explain object and
variables, conditional and	package construction process.
iterative execution, methods,	CO3 To construct robust Java programs
etc.	using exception handling and String class.
	CO4 To develop java programs
• Understand fundamentals	using multithreading and File
of object-oriented	Handling
programming inJava, including	CO5 To design and develop application
defining classes, invoking	programsusing UI components and Database
methods, using class libraries,	connectivity
etc.	connectivity.

UNIT-I Introduction:

Introduction & Fundamentals of JAVA, basic concepts of object-oriented programming, About Java Technology, comparison between procedural programming paradigm and object-oriented programming paradigm, Java 's architecture, Fundamental Programming Structure: Data Types, variable, Arrays. Control Flow: Java 's Selection statements (if, switch, iteration, statement, while, do-while, for, Nested loop), Concept of Objects and Classes, Reading console inputs, Constructor overloading, final, this, static keyword.

UNIT-II Inheritance:

definition and advantages, super keyword, Method overriding, dynamic method dispatch, Abstract class, Inner classes, Interface. Aggregation, Method overriding. Package: Package, importing packages, sub package. Exception Handling: Fundamentals, Inbuilt, User defined, Checked and Unchecked exceptions, Using try & catch, Multiple catch, throw, throws, finally.

UNIT-III String class:

Strings: string constructor, string methods, String Buffer and methods. Wrapper classes (Integer, Boolean, Character, etc.). Multi-threading: Thread concept, Thread life cycle, Thread class, Runnable interface, synchronization, Thread class methods. Java I/O: Use of Input Stream, Output Stream, Reader and Writer classes for reading from and writing data into disk files.

UNIT-IV CO4

Basics, Architecture, The HTML APPLET Tag, Passing Parameters to Applets, Applet context and show documents (). Event Handing: Delegation Event model, Event Classes, Event Listener, Interfaces, Adapter classes. JDBC: Fundamentals, Type I, Type II, Type III, Type IV drivers. Networking: Basics, Socket overview, Networking classes, & interfaces, TCP/IP client sockets, URL format, URL connection, TCP/IP Server Sockets.

[7 hrs.]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO2

[8 hrs.]

[7 hrs] **CO3**

[7 hrs.] **Applets:**

CO1

UNIT-V AWT:

CO5

components, Button, Label, Text Field, Panel, Window, Frame, Canvas, Action Listener, Mouse Listener, Key Listener, Item Listener etc. Layout managers, Remote method invocation (RMI). SWING: JButton, JLabel, JTextField, JScrollBar, JComboBox, JTabbed Pane, JScroll Pane, JTree etc. Generics in Java: Creating instances of generic classes, generic types, declaring (and invoking) methods that take generic types. Creating and running executable JAR (Java Archives).

[7 hrs.]

Text Books:

S.No.	Title	Authors	Publisher
1	Java - The CompleteReference	Herbert Scheldt	McGraw HillEducation
2	Programming with Java	Balagurusamy	McGraw Hill Education
3	Object Oriented Programming through JAVA	V. Vijaya Bhaskar, P. VenkataSubba Reddy	SCITECH

S. No.	Title	Authors	Publisher
1	Java: A Beginner 's Guide	Herbert	McGraw-Hill
1		Scheldt	Education

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

SubjectCode CS102403	Analysis and Design of Algorithms	L = 3	T = 0	$\mathbf{P} = 0$	Credits = 3
Evaluation	ESE	СТ	ТА	-	ESE Duration
Scheme	100	20	30	150	3 hours.

Course Objective	Course Outcomes
The Objective of this course is:To understand and apply the algorithm	CO1 Design algorithms for various computing problems.
analysis techniques.To critically analyze the efficiency of	CO2 Analyze the time and space complexity of algorithms.
alternative algorithmic solutions for the same problem.	CO3 Critically analyze the different algorithm design techniques for a given problem.
• To understand different algorithm design techniques.	CO4 Modify existing algorithms to improve efficiency.
• To understand the limitations of Algorithmic power.	CO5 To Understand how to apply various algorithms.

UNIT-I Introduction:

Definitions and Application of notations, Asymptotic notations: big oh, small oh, omega and theta notations, worst case, best case and average case analysis. solving recurrence equations: General recurrence equation, Master Method, Recursive Tree Method, substitution method, analyzing control structures. Analysis of Sorting and Searching: Heap, insertion, selection and bubble sort; sequential, binary and Fibonacci search.

UNIT-II Divide-and-Conquer Technique of problem solving:

The Basic divide and conquer algorithm for matrix multiplication, Quicksort, Merge sort, heap sort, shell sort, radix sort, Dynamic sets and searching: Array doubling, Red Black trees, hashing high, priority queues.

UNIT-III Graphs:

Definitions and representations, traversal, DFS and BFS., DFS on undirected graphs. Greedy algorithms: Prim's algorithm, single source shortest paths, Kruskal's minimal spanning trees, Dijkstra shortest path Transitive closure, APSP problem, Fractional Knapsack problems.

UNIT-IV Dynamic Programming and String Matching:

Sum of Subset problem, Graphs and their traversal, Multiplying a sequence of matrices, Multi Stage Graph, longest common sub sequence, knapsack problem. String Matching: Knuth - Moore-Pratt Algorithm, Boyer- Moore Algorithm, The general string problem as a finite automaton

UNIT-V Backtracking and Branch and Bound:

Back tracking and Recursive back tracking, the general method, N-queens problem, sum of subsets, graph coloring, Hamiltonian cycle, Knapsack problem.

General method, applications (Branch and Bound): 15 puzzle problem, Travelling sales person problem, 0/1 knapsack problem, LC (Least-cost search), FIFO Branch and Bound solution.

[7 hrs]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

[8 hrs.]

[7 hrs]

CO₂

CO1

CO3

[7 hrs]

CO4

[7 hrs] CO5

Text Books:

S.No.	Title	Author(s)	Publisher
1	Introduction to the Design	Anony Lovitin	Pearson
1	and Analysis of Algorithms.	Anally Levitin	Education
2	Computer Algorithms/ C++	Ellis Horowitz,	
		Sartaj Shani and	Universities
		Sagathevan	Press
		Rajasekar an	

S. No.	Title	Author(s)	Publisher
1	Introduction to Algorithms.	Thomas Cormann, Charles Eliasson,Ronald L. Rivest and Clifford Stein	PHI Learning Private Limited
2	Data Structures and Algorithms.	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman	Pearson Education, Reprint
3	Algorithms Design and Analysis.	Harsh Bhasin	Oxford university press
4	Design & Analysis of algorithms.	S. Sridhar	Oxford university press

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102404	Database Management System	L = 3	T = 0	$\mathbf{P} = 0$	Credits = 3
Fyaluation	ESE	СТ	ТА	-	ESE Duration
Scheme	100	20	30	150	3 hours.

Course Objective	Course Outcomes
 The objective of this course is: To understand the role of a database management system and its users in an organization. To understand database concepts, including the structure and operation of the relational data model Can successfully apply logical database design principles, including E-R diagrams and database normalization. Construct simple and moderately advanced database queries using Structured Query Language (SQL). To understand the concept of transaction, its properties and how to persist the data in complex concurrent users' environment. 	 CO1 Be familiar with basic concepts of RDBMS, Relational data model & be able to write relational algebra expressions for queries; CO2 Be familiar with basic database storage structures and access techniques: file and page organizations, indexing methods including B-tree and hashing; CO3 Understand DML, DDL and will be able to construct queries using SQL by knowing the importance of data & its requirements in any applications; CO4 Utilize a database modeling technique for a single entity classes, a one-to-one (1:1) relationship between entity classes, a one-to-many (1:M) relationship between entity classes, a many-to- many (M:M) relationship between entity classes, and recursive relationships; CO5 Be familiar with the basic issues of transaction, its processing and concurrency control

UNIT-I Introduction to Database & Indexing Techniques:

Advantages of DBMS, Type of Data Models, Schema and instances, DBMS Architecture and Data Independence.

Entity- Relationship Model: Attributes and Keys, Relationship Types, Weak Entity set, Strong Entity Set, Enhanced E–R Modeling, Specialization and Generalization.

Indexing Techniques: Indexes, Multi-level indexes, Dynamics Multilevel indexes using B trees and B+-Trees.

UNIT-II The Relational Data Model & SQL:

Types of data models, Relational data model: concepts, constraints, relational algebra, relational calculus, Tuple and Domain relational calculus,

SQL: DDL, DML, DCL, Types of constraints, defining different constraints on a table, Defining & Dropping integrity constraints in the alter table command, View, Index.

UNIT-III Database Design:

Functional Dependencies and Normalization for Relational Databases: Informal design guidelines for relation schemes, Functional dependencies, Normal forms based on primary keys, General definitions of second and third normal forms, Boyce- Codd normal form, problem related with normal forms & solutions. Multi valued & Join Dependencies, 4th & 5th Normalization.

[7 hrs.]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO2

[7 hrs]

CO3

CO1

[8 hrs]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

UNIT-IV Query & Transaction Processing:

Query Processing: Query processing stages, Query interpretation, Query execution plan, Table scans, Fill factor, Multiple index access, Methods for join tables scans, Structure of a query optimizer. **Transaction Processing:** Types of failures, ACID property, schedules and recoverability, satiability of schedules, Levels of transaction consistency, Deadlocks.

[7 hrs]

CO5

CO4

UNIT-V Crash recovery and Concurrency Control:

Failure classification, Different type of Recovery techniques & their comparative analysis, deferred update, immediate update, Shadow paging, Check points, On-line backup during database updates. Concurrency Control: Different type of concurrency control techniques & their comparative analysis, Locking techniques, Time- stamp ordering, multi-version techniques, Optimistic techniques, Multiple granularities.

Database Security: Authentication, Authorization and Access Control, DAC, MAC, RBAC models, Intrusion detection, SQL injection.

[7 hrs.]

Text Books:

S.No.	Title	Authors	Publisher
1	Database system concept	Korte & Sudarshan	MH
2	Principles of Database Systems	Ullman, J. O	Golgotha Publications
3	Introduction to Database Systems	C.J. Date	Pearson Education

S. No.	Title	Authors	Publisher
1	Principles of Database and Knowledge – Base Systemsl, Vol 1	J. D. Ullman	Computer Science Press
2	Foundations of Databases	Serge Abiteboul, Richard Hull, Victor Vianu	Addison-Wesley

Subject Code CS102491	Java Programming Lab	L = 0	$\mathbf{T} = 0$	P = 2	Credits = 1
Fyaluation	ESE	СТ	ТА	-	ESE Duration
Scheme	25	-	25	-	-

Course Objective	Course Outcomes
 The objective of this course is: Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc. Understand fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc. 	 CO1 To develop java programs using constructors and destructors. CO2 To utilize the concept of inheritance to develop java programs. CO3 To demonstrate the use of exception handling and Strings in java programs. CO4 To create multithreaded applications using java programming. CO5 To design and develop interactive application programs using user Interfacing components, file handling etc.

List of Experiments:

[12 hrs]

- Write a program to find the volume of a box having its side w, h, d means width, height and depth. Its volume is v=w*h*d and also find the surface area given by the formula s=2(wh+hd+dw). use appropriate constructors for the above.
- 2. Develop a program to illustrate a copy constructor so that a string may be duplicated into another variable either by assignment or copying.
- **3.** Create a base class called shape. Apart from Constructors, it contains two methods get xy564value () and show xyvalue () for accepting co-ordinates and to display the same. Create the sub class Called Rectangle which contains a method to display the length and breadth of the rectangle called showxyvalue (). Illustrate the concepts of Overriding and Constructor call sequence.
- **4.** Write a program that creates an abstract class called dimension, create two subclasses, rectangle and triangle. Include appropriate methods for both the subclass that calculate and display the area of the rectangle and triangle.
- 5. Write a program, which throws Arithmetic Exception. Write another class (in a differentfile) that handles the Exception.
- **6.** Create a user defined Exception class which throws Exception when the user inputs themarks greater than 100 Catch it and again rethrow it.
- 7. Write a program to illustrate various String class methods.
- **8.** Write a program to illustrate various String Buffer methods.
- **9.** Write a program in which a My thread class is created by extending the Thread class. In another class, create objects of the My thread class and run them. In the run method print CSVTU10 times. Identify each thread by setting the name.
- **10.** Write a program to illustrate various Thread methods.
- **11.** Write a Program to implement Bank Account Class which illustrates the concept of Thread Synchronization.
- 12. To write a program to create a text file using Byte Stream class.

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

- **13.** To write a program to copy contents of one file to another.
- 14. Write a program to find numbers of occurrence of vowels in a file.
- **15.** Write a program, which illustrates capturing of Mouse Events. Use Applet for this.
- **16.** Write a program using swing components which simulates simple calculator.
- **17.** Write a JDBC program for Student Mark List Processing.

S. No.	Title	Authors	Publisher
1	Head first Java	Kathy Sierra & Bert Bates	Computer SciencePress
2	Beginning Programming with Java for Dummies	Barry Burd	Addison-Wesley

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102492	Python Lab	L = 0	T = 0	P = 2	Credits = 1
Evaluation Scheme	ESE	СТ	ТА	-	ESE Duration
	25	-	25	-	-

Course Objective	Course Outcomes
•	
	Course Outcome: At the end of the course,
The objectives of this lab are:	students will be able to,
The course is designed	CO1: Describe the Python language syntax
• To develop logical understanding of	including control statements, loops and functions
the subject.	to write programs for a wide variety problem in
• To create the ability to model, solve	mathematics, science, and games.
and interpret physical and engineering	CO2: Examine the core data structures like lists,
problems.	dictionaries, tuples and sets in Python to store,
• To provide an overview of functions of	process and sort the data.
complex variable which helps in solving	CO3: Interpret the concepts of Object-oriented
many engineering problems	programming as used in Python using
• To provide Basic knowledge of	encapsulation, polymorphism and inheritance
Python.	CO4: Discover the capabilities of Python regular
	expression for data verification and utilize matrices
	for building performance efficient Python
	programs.
	CO5: Identify the external modules for creating
	and writing data to excel files and inspect the file
	operations to navigate the file systems.

List of Experiments:

[12 hrs.]

(Each student should perform, at least, 10 experiments.)

- 1. Write programs to understand the use of Python Identifiers, Keywords, Indentations, Comments Python, Operators, Membership operator.
- 2. Write programs to understand the use of Python String, Tuple, List, Set, Dictionary, File input/output.
- **3.** Write programs to understand the use of NumPy's Nd array, Basic Operations, Indexing, Slicing, and Iterating, Conditions and Boolean Arrays.
- **4.** Write programs to understand the use of NumPy's Shape Manipulation, Array Manipulation, Vectorization.
- 5. Write programs to understand the use of NumPy's Structured Arrays, Reading and Writing Array Data on Files.
- **6.** Write programs to understand the use of Pandas Series, Data Frame, Index Objects, Reindexing, Dropping, Arithmetic and Data Alignment.
- 7. Write programs to understand the use of Pandas Functions by Element, Functions by Row or Column, Statistics Functions, Sorting and Ranking, Correlation and Covariance, -Not a Number Data.

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

- **8.** Write programs to understand the use of Pandas for Reading and Writing Data using CSV and Textual Files, HTML Files, XML, Microsoft Excel Files.
- **9.** Write programs to understand the use of Matplotlib for Simple Interactive Chart, Set the Properties of the Plot, matplotlib and NumPy.

Write programs to understand the use of Matplotlib for Working with Multiple Figures andAxes, Adding Text, adding a Grid, adding a Legend, Saving the Charts. Write programs to understand the use of Matplotlib for Working with Line Chart, Histogram, Bar Chart, Pie Charts

S. No.	Title	Authors	Publisher
1	Python Data Analytics	Fabio Nelli	APress
2	Python for Data Analysis	Wes McKinney	O 'Reilly

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102493	Database Management System Lab	L = 0	T = 0	P = 2	Credits = 1
Evolution	ESE	СТ	ТА	-	ESE Duration
Scheme	25	-	25	-	-

Course Objective	Course Outcomes
 The objectives of this lab are: To explain basic database concepts, applications, data models, schemas and instances. To demonstrate the use of constraints and relational algebra operations. Describe the basics of SQL and construct queries using SQL. To emphasize the importance of normalization in databases. To facilitate students in Database design 	Course Outcome: At the end of the course, students will be able to, CO1 Apply the basic concepts of Database Systems and Applications. CO2. Use the basics of SQL and construct queries using SQL in database creation and interaction. CO3. Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system. CO4. Analyze and Select storage and recovery techniques of database system. CO5. To familiarize issues of concurrency control and transaction management.

LIST OF EXPERIMENTS

[12 hrs.]

1.Database Schema for a customer-sale scenario Customer (Cust id: integer, Cust name: string) Item (item_id: integer, item name: string, price: integer) Sale (bill no: integer, bill data: date, cystoid: integer, item_id: integer, qty_sold: integer) For the above schema, perform the following—

Create the tables with the appropriate integrity constraints Insert around 10 records in each of the tables

(a) List all the bills for the current date with the customer names and item numbers.

(b) List the total Bill details with the quantity sold, price of the item and the final amount.

(c) List the details of the customer who have bought a product which has a price>200.

(d) Give a count of how many products have been bought by each customer.

(e) Give a list of products bought by a customer having cust_id as 5.

(f) List the item details which are sold as of today.

(g) Create a view which lists out the bill no, bill date, cust_id, item_id, price, qty_sold, amount.

(h) Create a view which lists the daily sales date wise for the last one week.

(I) Create a view which lists out the bill no, bill date, cust_id, item_id, price, qty_sold, amount.

(j) Create a view which lists the daily sales date wise for the last one week.

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

2.Database So Membership	chema for a Student L (Mem_no: integer, Stu	ibrary scenario Student ad no: integer) Book(boo	(Stud no: intege ok no: integer, b	r, Stud name: string) ook_name:string,			
Iss_rec (iss_no: integer, iss_date: date, Mem_no: integer, book_no: integer) For the above schema, perform the following—							
(a) Create the	(a) Create the tables with the appropriate integrity constraints.						
(b) Insert arou	und 10 records in each	of the tables.					
(C) List all the (d) List all the	e student names with t	t date with student and F	ers. Book names				
(e) List the de	etails of students who	borrowed book whose a	uthor is CI DA	Ъ			
(f) Give a cou	int of how many book	s have been bought by e	each student.				
(g) Give a list	t of books taken by stu	ident with stud_no as 5.					
(h) List the bo	ook details which are i	issued as of today.					
(I) Create a v	iew which lists out the	e iss_no, iss _date, stud_	name, book nan	ne.			
(j) Create a vi	iew which lists the dai	ly issues-date wise for t	he last one weel	ζ.			
3. Database S	chema for a Employe	e-pay scenario employe	e (emp_id: integ	er, emp_name:			
string) depart	ment (dept_1d: integer	, emp_name: string)	, de des etienes in	to one additional			
pay details (e	mp_10: integer, dept_1	d: integer, basic: integer	r, deductions: in	teger, additions:			
For the above	schema perform the	following:	=)				
(a) Create the	tables with the approx	nriate integrity constrair	nts				
(b) Insert arou	und 10 records in each	of the tables					
(c) List the er	nployee details depart	ment wise					
(d) List all the	e employee names wh	o joined after particular	date				
(e) List the de	etails of employees wh	ose basic salary is betw	een 10,000 and	20,000			
(f) Give a cou	int of how many empl	oyees are working in ea	ch department				
(g) Give a nat	me of the employees v	whose net salary>10,000)				
(h) List the de	etails for an employee	_1d=5	4 h :				
(I) Create a v	iew which lists out the	e emp_name, departmen	t, Dasic, deducti	ons, net salary			
() Cleate a VI	chema for a student-I	ah scenario Student (stu	id no integer s	tud name string			
class: string)	Class (class: string de	escript: string)	id_no. integer, s	tuu_name. string,			
Lab (mach ne	o: integer, Lab no: int	teger, description: String	g) Allotment (St	ud no: Integer,			
mach_no: inte	eger, dayof week: strir	ng) For the above schem	a, perform the f	ollowing—			
(a) Create the	tables with the approp	priate integrity constrair	nts	-			
(b) Insert arou	und 10 records in each	of the tables					
(c) List all the	e machine allotments v	with the student names,	lab and machine	numbers			
(d) List the to	tal number of lab allo	tments day wise	1 1 0000				
(e) Give a cou	unt of how many mach	nines have been allocate	d to the CSIT	class			
(I) Give a ma	chine allotment detail	of the stud_no 5 with hi	is personal and c	class details			
(g) Count for —Monday	now many machines i	nave been anocated in L		day of the week as			
(h) How man	v students class wise h	nave allocated machines	in the labs?				
(I)Create a vi	ew which lists out the	stud no. stud name, ma	ach no. lab no.	davofweek			
(1) ereme a view which how out the stud_ho, stud_hune, huch_ho, huc_ho, dujorweek							
(j) Create a vi	(j) Create a view which lists the machine allotment details for —Thursday						
5(a) Write and execute subprogram to find largest number from the given three numbers.							
(b) Write and execute subprogram using loop, while and for iterative control statement							
(b) write and execute subprogram using loop, write and for iterative control statement.							
L							
			1.00	Applicable for AV			

Γ

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

6(a) Write and execute subprogram to check whether the given number is Armstrong or not

(b) Write and execute subprogram to generate all prime numbers below 100.

7(a) Write and execute subprogram to demonstrate the GOTO statement.

(b) Write a subprogram to demonstrate %type and %rowtype attributes

8(a) Write and execute subprogram to demonstrate predefined exceptions

(b) Write and execute subprogram to demonstrate user defined exceptions

9(a) Create a cursor, which displays all employee numbers and names from the EMP table.

(b) Create a cursor, which update the salaries of all employees as per the given data.

10(a) Create a cursor, which displays names of employees having salary > 50000.

(b) Create a procedure to find reverse of a given number

11(a) Create a procedure to update the salaries of all employees as per the given data

(b) Create a procedure to demonstrate IN, OUT and INOUT parameters **12(a)** Create a function to check whether given string is palindrome or not.

(b) Create a function to find sum of salaries of all employees working in depart number 10.

13(a) Create a trigger before/after update on employee table for each row/statement.

14 Create a trigger before/after delete on employee table for each row/statement.

15 Create a trigger before/after insert on employee table for each row/statement.

16(a) Create a Form to display employee details using SQL

(b) Create a Report to generate all employee annual salaries....

Additional Programs:

1. Create a Master/details relationship form which perform Add New, Search, Delete, Save and Update on the records

2.Generate a report to calculate employee 's salaries department wise from employee table.

3.Create a Report to generate the details of employee table including sum and average salaries department wise.

Kultuci	DUUK3.		
S. No.	Title	Authors	Publisher
1	Fundamentals of Database Systems	Elma Sri Nava the	Pearson Education
2	An Introduction to Database systems	C.J. Date, A. Kannan,	Pearson, Eight Edition
		S. Swami Nadhan,	

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code CS102494	Mini Project-II	L = 0	T = 0	P =2	Credits = 1
Evaluation	ESE	СТ	ТА	-	ESE Duration
Scheme	50	-	25	-	-

Course Objective	Course Outcomes
The objectives of this lab are: The objective of this course is to improve student 's ability to analyze, design and solve complex engineering problems through pedagogies (Project Based Learning) that support them in developing these skills. The goal here is not to passively absorb and reiterate information; but rather to actively engage with the content, work through itwith others, relate to it through an analysis, use modern tools and effectively solve problems with the corresponding knowledge gained.	 On successful completion of the course, the student will be able to: CO1: Identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach. CO2: Reproduce, improve and refine technical aspects of engineering projects applying appropriate techniques, resources, and modern engineering and IT tools. CO3: Work as an individual and as a member or leader in teams in development of technical projects. CO4: Follow management principle and value health, safety and ethical practices during project. CO5: Communicate and report effectively project related activities and findings.

The Process Followed to Maintain the Quality of Student Projects are: [12 Hrs.]

- 1. Introduction to IoT and its components.
- 2. Introduction to arduino uno Board, Bread Board & connecting various devices.
- 3. Types of sensors, Actuators and sending, receiving data techniques.
- 4. To communicate with wifi and Bluetooth devices.
- 5. Allotment of project ideas.
- 6. Monitoring
- 7. Monitoring
- 8. Assessment of Project work.

(a) Allotment of Projects:

(i) Students form their team (max four students) and submit their areas in which they would like to pursue their projects.

(ii) Through meeting and deliberations students are allotted guide depending on their preference and maximum number of groups under a faculty is limited to three.

(b) Identification of projects:

Students are asked to formulate problem statement and state objectives of their project in consultation with the project guide

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

c) Continuous Monitoring

(i) Progress is continuously monitored by guide and instructions are given how to proceed further during their project periods as per time table.

(ii) Students submit weekly progress report to the project in-charge after consultation with their project guide.

(d) Evaluation

(i) In order to evaluate projects two project seminars (assessment) are taken in which student 's team present their project through presentations and demonstrate their work.

(ii) Students are assessed on the basis of their technical skill implementation, use of modern tools, communication skill, team work, health, safety and ethical practices and relevance of the project.

(iii) At the end of the semesters a report is submitted by the students and student 's projects are finally evaluated by external examiner in end semester practical examination based

S. No.	Title	Authors	Publisher
1	ESE 2022 - BASICS OF PROJECT	IES MASTER TEAM	IES MASTER
1	MANAGEMENT		PUBLICATION (1 January
			2021)
2	Modern Systems Analysis and Design	Jeffrey A. Hoffer,	Pearson Education; Third
Z		Joey F. George,	Edition; 2002.
		Joseph S. Valakati	

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

Subject Code	BIOLOGY FOR	$\mathbf{L} = 0$	T = 0	P = 0	Credits = 0
(AC100492)	ENGINEERS				
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	Workshop ,Quiz, Seminar And		25	25	
	By Organize Guest Lecture	-			-

Course Objectives	Course Outcomes
The objective of this course is to impart an understanding of fundamentals of biological systems and its applications towards industries to	On successful completion of the course, the student will be able to:
solve the problems in the real life.	
 To convey that Biology is as important scientific discipline as Mathematics, Physics, Chemistry, and Engineering and technology. To convey that classification per se is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Discuss the concept human genetics. To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. The molecular basis of coding and decoding genetic information is universal How to analyses biological processes at the reduction of the same o	 CO1: Describe how biological observations of 18th Century that lead to major discoveries CO2: Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological. Highlight the the concepts of genetic material and its segregation and independent assortment. CO3: Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. Classify enzymes and distinguish between different mechanisms of enzyme action. Concept of genetic code. Universality and degeneracy of genetic code CO4: Identify DNA as a genetic material in the molecular basis of information transfer. The fundamental principles of energy transactions in physical and biological world. Thermodynamics properties of different biological systems.
 reductionist level. Concept of Energy change. The fundamental concept and principles of Microbiology 	CO5: Apply thermodynamic principles to biological systems. Identify and classify microorganisms. A Brief Account of Evolution

Unit 1. INTRODUCTION

Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.

Unit 2. CLASSIFICATION & GENETICS

Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy.Classification. Discuss based on (a) cellularity- Unicellular or multicellular (b) ultra structure- prokaryotes or eucaryotes. (c) Energy and Carbon utilization -Autotrophs, Heterotrophs, Lithotropes (d) Ammonia excretion - Aminotelic, Uricotelic, Ureotelic (e) Habitataacquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M.musculus.

Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO1

[2 Hrs.] **CO2**

.[3Hrs.]

No.

2		
Molecular Genetics	Stent, G. S.; and Calendar, R.W.H.	Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
Microbiology	Prescott, L.M J.P. Harley and C.A. Klein	W.M.C. Brown Publishers
Biology for engineers and other	Prof. Suraishkumar & Prof Madhulika Dixit	IIT madras

Unit 5. MICROBIOLOGY EVOLUTION

CO5 microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.

Origin of Universe, Origin of Life, Evolution of Life Forms, Evidences of Evolution, Adaptive

Publisher

Unit 3. BIOMOLECULES & INFORMATION TRANSFER

Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.

Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.

Unit 4. MACROMOLECULAR ANALYSIS & ITS METABOLISM

Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as

an energy currency. This should include the breakdown of glucose to $CO_2 + H_2O$ (Glycolysis and Krebs cycle) and synthesis of glucose from CO_2 and H_2O (Photosynthesis). Energy yielding and Energy consuming reactions. Concept of Energy change

Concept of single celled organisms. Concept of species and strains. Identification and classification of

Radiation, Theories of Evolution BiologicalEvolution, Hardy–Weinberg Principle,

Author(s)

Campbell, N. A, Reece, J. B., Urry,

Lisa, Cain, M, L., Wasserman, S. A.,

Miniorsky, P. V., Jackson, R. B. Conn, E.E, Stumpf, P.K., Bruening

Nelson D. L. and Cox M.M.W.H.

G., Doi R.H.

[3 Hrs.]

Publisher

Pearson Education Ltd

John Wiley and Sons

Freeman and Company

[3 Hrs.]

[4 Hrs.]

non biologist. **Reference Books:** S.

Title

Text Books:

approach

Outlines of

Biochemistry

Principles of

Biochemistry

Title

Biology: A global

S.

No.

1.

2.

3.

4.

5.

6

1.	Biology For Engineers	DrTanu Allen, DrSohini Singh	Vayu Education Of India New Delhi
2.	Biology For Engineers	Arthur T.Johnsion	Taylor &Francis Group
3.	Molecular. Cellular and tissue Engineering	Joseph D .Bronzino,Donal R .Peterson	CRC Press
4.	Biology For Engineers	Rajiv Singal,GauravAgrawal,RituBir	CBS Publisher & distributors
5.	Biology For Engineers	G,K,Suraish Kumar	OUP India

Author(s)

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO4

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards